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Abstract. The electrochemical behavior of 4-(azulen-1-yl)-2,6-bis((E)-2-(thiophen-2-yl)vinyl) pyrylium 

perchlorate (L) was studied by cyclic voltammetry, differential pulse voltammetry, and rotating disk 

electrode voltammetry. The electrochemical polymerization of L was studied. Modified electrodes 

covered by polyL films were obtained by successive scanning or by controlled potential electrolysis 

(CPE) at different charges and potentials. The new electrodes obtained by CPE were applied for sensing 

the following heavy metals ions: Cu(II), Pb(II), Cd(II), Hg(II). The best results have been registered for 

Pb(II) ion with a detection limit of  10-8 M. 
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1.Introduction 
The characterization of azulen-1-yl substituted heterocycles is an important task for researchers in 

view of new applications. The features of such compounds are due to this double "push-pull" structure: 

of the azulene itself (1) and of the (2-(thiophen-2-yl)vinyl) pyrylium connected to azulene (2) where 

azulene is the electron donor group, and the heterocycle is the acceptor group. Azulene polarized 

structure may involve the compounds in both oxidation and reduction processes. The electrochemical 

properties (potentials values and redox waves number) are greatly influenced by the nature and position 

of substituents [1-5]. Determination of azulen-1-yl substituted heterocycles properties is important for 

the potential application of such compounds in many fields: nonlinear optics [6], organic field-effect 

transistors [7, 8], solar cells [9, 10], and molecular devices [11]. The charged pyrylium ring and the 

pyridinium heteroaromatic ring have a good electron donor on azulene-1-yl moiety, and increase the 

stability of the conjugated system, giving valuable push-pull features to the compound. Several similar 

compounds have been examined and found as good ligands for metal ions detection [12-14], precatalysts 

used for direct oxidation of amines to nitriles [15] and for the preparation of modified electrodes [16-

19]. 

This work proposes a new modified electrode based on azulene-thiophene vinyl pyrylium salt (4-

(azulen-1-yl)-2,6-bis((E)-2-(thiophen-2-yl)vinyl)) (Figure 1). It gives the results for sensing the 

following heavy metal cations: Cu(II), Pb(II), Cd(II) and Hg(II). 

The study of 4-(azulen-1-yl)-2,6-bis((E)-2-(thiophen-2-yl)vinyl) pyrylium perchlorate (L) was a 

subject of a PhD thesis defended in our group [20]. Similar ligands, such as 2,6-bis((E)-2-

(2thienyl)vinyl)-4-(4,6,8-trimethylazulen-1-yl)pyrylium perchlorate [21], have been tested and it has 

been shown that they exhibit complexing properties that can be used for obtaining modified electrodes 

for analytical applications in environmental monitoring. 
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2. Materials and methods 
 L azulene ligand was synthesized according to the previous described method [22]. 

All reagents were of analytical grade. Acetonitrile (Sigma Aldrich, electronic grade 99.999 % trace 

metals) was used as solvent, and tetra-n-butylammonium perchlorate (TBAP) (Fluka, puriss, 

electrochemical grade >99%) as supporting electrolyte, without further purification. Sodium acetate 

(Roth, 99.99%) and acetic acid (Fluka, >99.0%, trace select) were used to prepare acetate buffer solution. 

For heavy metal recognition the stock solutions (10-2 M) have been obtained from lead(II) nitrate, 

Pb(NO3)2 (Sigma-Aldrich, +99.99% trace metal basis), cadmium(II) nitrate, Cd(NO3)2 x 4 H2O (Sigma-

Aldrich, +99.0%), copper(II) acetate, Cu(CH3COO)2 x H2O (Fluka, +99.0%) and mercury(II) acetate, 

Hg(CH3COO)2 (Sigma-Aldrich, +99.99% trace metal basis), which were used as received, and distilled 

water, obtained using a Millipore Direct – Q 3UV water purification system (18.2 MΩ cm).  

The electrochemical experiments were performed at room temperature (25oC) under argon 

atmosphere. A potentiostat PGSTAT 12 AUTOLAB was connected to a standard three-electrode cell. 

The working electrodes were glassy carbon disks (3 mm diameter). Ag/10 mM AgNO3 in 0.1 M TBAP, 

CH3CN, was used as reference electrode, and a platinum wire served as counter-electrode. The working 

electrode was polished with diamond paste (0.25 μm) and cleaned with the acetonitrile before each 

experiment.  

The cyclic voltammetry (CV) experiments were performed at different scan rates between 0.1 and 

1.0 V/s. Differential pulse voltammetry (DPV) was done with a scan rate of 0.01 V/s, a pulse height of 

0.025 V, and a step time of 0.2 s. Rotating disk electrode voltammetry (RDE) experiments were recorded 

at 0.01 V/s for different rotation rates. 

All the potentials were referred to the potential of ferrocene/ferrocenium (Fc/Fc+) redox couple 

(+0.07 V in 0.1 M TBAP, CH3CN) for the electrochemical study performed in organic solvent. 

 Electrochemical analysis of heavy metal cations detection has been done by anodic stripping 

voltammetry in 0.1 M acetate buffer solution (pH = 5.5) as supporting electrolyte. Heavy metal cation 

solutions of various concentrations (10-8 – 10-5 M) were freshly prepared by successive dilutions from 

their 10-2 M stock solutions in deionized water acquired by using a system Millipore Direct – Q 3UV 

water purification (18.2 MΩ cm).  

 

3. Results and discussions 
Electrochemical properties of L 

Voltammetric experiments were carried out by CV, DPV and RDE using millimolar solutions of L 

in 0.1 M TBAP, CH3CN. All the curves were recorded starting from the equilibrium potential (the 

potential being scanned as indicated by arrows on all Figures). 

Figure 2 shows the DPV and CV anodic and cathodic curves at various concentration (0 – 2 mM) of 

L in 0.1 M TBAP, CH3CN on glassy carbon electrode. The anodic and cathodic peaks were denoted 

according to the order in which they appear during the DPV scans. After the shoulder a1, which appears 

at about 0.85 V, in the DPV anodic scans it can be seen two peaks (a2, a3) of oxidation, while in the 

DPV cathodic scans four smaller peaks (c1 – c4) of reduction.  

Figure 1. Chemical 

structure of L 
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Compared to DPV, in CV curves only two main peaks are observed in the anodic scans, which 

correspond to the peaks a2 and a3 in DPV, and three smaller peaks, which correspond to the peaks c1, 

c3 and c4 in DPV, in the cathodic scans. 

 

 
Figure 2. Studies by DPV and CV on glassy carbon electrode  

for different concentrations of L (in 0.1 M TBAP, CH3CN) 

 

The dependencies of the peak current (µA) vs. concentration of L from DPV and CV anodic and 

cathodic curves are represented in Figure 3. The peak currents linearly increase with concentration of L.  

 

 
Figure 3. Dependences of anodic and cathodic peak currents vs. 

concentration of L from DPV and CV curves 

 

Table 1 shows the equations of the linear dependences of the main peak currents vs. concentration 

of L shown in Figure 3 from DPV and CV. For the shoulder a1 it is difficult to estimate all characteristics 

in DPV and CV. For the main peak a2 the slope from CV is about 5 times bigger than that from DPV. 

In addition, the correlation coefficient is higher for CV than DPV. For the peak a3 the slope from CV is 

about 25 times bigger than that from DPV. Both correlation coefficients are small, but that for CV is 

higher than for DPV. For the peak c1 the absolute slope from CV is only 2 times bigger than that from 

DPV, and the correlation coefficient is smaller for CV than DPV. Generally, good correlation 

coefficients were obtained (Table 1), but the above exceptions (marked with italic letters in Table 1) 

appear and they will be discussed further (for the peaks a3 and c1) in correlation with the proposed 

reaction schemes. 
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Table 1. Equations of the peak current - i(µA) VS. L concentration - C(mM) 

 for the main peaks from DPV and CV 
Method Peak Equation (Correlation coefficient) 

DPV 

a2 i = 14.41 + 11.43 x C (0.903) 

a3 i = 11.25 + 0.99 x C (0.422) 

c1 i = -2.52 – 3.34 x C (0.975) 

c3 i = -3.01 – 5.21 x C (0.963) 

c4 i = -2.56 – 5.35 x C (0.999) 

CV 

a2 i = 57.31 + 56.82 x C (0.984) 

a3 i = 72.51 + 24.23 x C (0.737) 

c1 i = -7.65 – 6.64 x C (0.485) 

c3 i = -6.62 – 24.38 x C (0.907) 

c4 i = -2.63 – 28.61 x C (0.947) 

 

CV anodic and cathodic curves at different scan rates (0.1 – 1.0 V/s) for the first oxidation and 

reduction peaks, in 2 mM solution of L in 0.1 M TBAP, CH3CN and the linear dependencies of the peak 

currents (µA) vs. the square root of the scan rate are shown in Figure 4. The currents in absolute values 

linearly increase with the square root of the scan rate for both anodic and cathodic peaks. However, the 

slope for a2 peak is seven times higher than the absolute slope for c1, which indicate very different 

mechanisms. Good correlation coefficients were obtained. The diffusion coefficient (D) of L was 

calculated using the Randles-Sevcik equation for a three electrons transfer (the reason is given further) 

from the slope of a2 peak vs. the square root of the scan rate, and the obtained value is 0.83x10-5 cm2/s. 

A close value for D (0.80 x10-5 cm2/s) was obtained when the calculation has been done from the current 

values of the shoulder a1 for one-electron transfer, in accord with the proposed mechanism (see further). 

 

 
Figure 4. CV anodic and cathodic curves at different rotation rates  

(0.1– 1.0 V/s) in 2 mM solution of L in 0.1 M TBAP, CH3CN; inset: 

(0.1 the linear dependencies of the peak currents (µA) 

(0.2 vs. the square root of the scan rate 

 

Figure 5 shows the CV (0.1 V/s) anodic and cathodic curves on different scan domains for 2 mM 

solution of L. In agreement with curves shapes from Figure 5 the processes c1, a2, and a3 seem to be 

irreversible, while the processes c3 and c4 appear more reversible (Table 2). 
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Table 2. Peak potential values (V vs. Fc/Fc+) and processes from dpv and CV at [L] = 2 mM 

Peak 
Method 

Process type 
Peak assignment* 

DPV CV 

a1 ~0.82 (shoulder) 0.86 - Radical-cation formation 

a2 1.01 1.11 irreversible Polymer (Pa1) formation 

Polymer (Pa1) oxidation 

a3 1.55 1.65 irreversible Tridimensional polymer (Pa2) 

formation 

c1 -0.80 -0.85 irreversible Reduction of pyrylium cations to 

radicals and polymer Pc1 formation 

c2 -1.70 - - Reduction to pyran and polymer Pc3 

formation 

c3 -1.93 -1.97 quasireversible Reduction to dihydropyran and polymer 

Pc4 formation 

c4 -1.94 -2.27 quasireversible Reduction to tetrahydropyran and 

polymer Pc5 formation 

    *According to mechanistic Schemes 1 and 2 

 

Figure 6 shows the RDE anodic and cathodic curves on glassy carbon electrode at different rotation 

rates (500 – 1500 rpm) for 2 mM solution of L and the corresponding DPV anodic and cathodic curves. 

The processes notation on the RDE curves agrees with that in DPV. In the RDE anodic scans the current 

initially increases, and then suddenly decreases forming a peak (in the potential domain of DPV peaks 

a2 and a3). The obtained curves in the oxidation domain indicate the formation of an insulating film that 

covers the electrode. This agrees with the fact that the rotation rate does not influence the RDE currents 

for a2 and a3. In the reduction scans an irregular RDE behaviour is also noticed in the potential domain 

of c1 (like a peak), and the rotation rate does not influence the RDE currents for c1, in accord with the 

formation of films on the electrode surface at low cathodic potentials. The behaviour becomes more 

regular for the other successive reduction waves (for c2-c4) for which the currents increase with the 

rotation rate.  

                  

Figure 5. CV anodic and 

cathodic curves on 

different scan domains 

 ([L] = 2 mM) 
 

Figure 6. RDE curves at 

different rotation 

rates and DPV curves 

([L] = 2 mM) 
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Mechanistic schemes 

Schemes 1 and 2 describe the most probable mechanism of oxidation and reduction for the studied 

compound. This agrees with the voltammetric results obtained by CV, DPV (Table 2) and RDE, and 

with previous investigations on the electrochemistry of pyrylium salts, which is more complex here due 

to the presence of several substituents. A comparison with other compounds in this class of azulenyl-

bis(heterocyclic vinyl) pyrylium derivatives was done before, especially in [22]. Some details are given 

in other papers [21, 23 – 29].  

The most probable reaction of electrochemical oxidation depicted in Scheme 1 is the formation of 

the radical cation of the azulene moiety (L+ ▪), because azulene is the easiest oxidizable part of the 

molecule. This step could occur in the first anodic process (a1 peak). After this, another electron is lost 

with the formation of L2+ dication (a2 peak). This dication is reactive enough to attack, as an electrophilic 

species, the vinyl thiophene system with the formation of a dihydrodimer DaH2
3+. This intermediate is 

not stable, and it eliminates two protons generating the dimer Da, as a double azulenic radical cation, a 

relatively more stable species. It oxidizes further to the azulene dications at almost the same potential 

with the radical cation of the monomer, increasing the intensity of a2 peak. These cations can react in a 

chain with the rest of the L+ ▪. as it is depicted in Scheme 1 leading to a polymer Pa1. At higher potentials, 

the vinyl thienyl groups (from Pa1) can be oxidized to radical cations (a3 peak). They could react with 

Pa1 chain leading to a tridimensional polymer. Being a side reaction of the polymer, a low correlation 

coefficient of the peak a3 (Table 1) in electrochemical experiments in comparison with the other anodic 

peaks of the ligand could be understood.  

At electrochemical reduction, depicted in Scheme 2, a pyrylium radical is formed first (peak c1 at -

0.8 V, potential characteristic for the reduction of other pyrylium salts [30]). A chemical step of 

dimerization of this radical to dimers, such as Dc follows, as was observed in the case of the reduction 

of other vinyl pyrylium salts [23, 31].  By diprotonation of Dc to DcH2
2+ a structure that stabilizes as a 

bis pyrylium salt is generated, which is further reduced to diradical DcH2
▪▪ (at almost the same potential 

as L), leading finally to a cathodic polymer Pc1. All these processes occur at c1 peak (broad due to the 

simultaneous Pc1 film formation and reduction of pyrylium cations to radicals). The lower correlation 

coefficient of the peak c1 (Table 1) in comparison with other peaks of the ligand could be explained by 

this influence. The generated polymer can be again protonated leading to polymeric pyrylium salt (Pc2). 

The salt is reduced further at almost a similar potential as L (c2 peak), generating Pc3 polymer. In Pc3 

the diradical has no more a 2-methylene-2H-pyran structure to be protonated to a pyrylium salt; 

therefore, it is reduced first to a pyran structure polymer Pc4 and then, finally, to a tetrahydropyran 

structure polymer Pc5. It is also possible that the pyrylium radical is involved in parallel in non-selective 

further reduction of the azulene and thiophene systems due to the low reducing potential differences 

(between peaks c2 and c3, c4).  

As depicted in Schemes 1 and 2, polymer films with different structures could be formed by anodic 

and cathodic processes. In order to establish their real structure, characterizations are difficult to achieve, 

but estimates based on the number of electrons involved in these peak processes can be made. This 

number is higher for a2 peak (3e-/(molecule of L), than for c1 (2e-/(molecule of L), fact which can 

explain the higher absolute value for a2 slope in comparison to c1, in accord with the mechanisms 

proposed for oxidation and reduction. These influences have different slopes in CV and DPV (Table 1) 

due to the difference of the scan rate in CV (100 mV/s) and DPV (10 mV/s). 
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Scheme 1 
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Scheme 2 
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Modified electrodes 

PolyL modified electrodes were prepared by successive cycling or by controlled potential 

electrolysis (CPE) at different electropolymerization charges in 2mM solution of L in acetonitrile 

containing 0.1 M TBAP. After that, the modified electrodes were transferred in 2 mM ferrocene solution 

in 0.1 M TBAP, CH3CN. The ferrocene signal of the modified electrodes was compared with that 

obtained on bare electrode. 

Figure 7A presents the CV curves obtained by 20 successive scans between -0.2 V and 1.36 V. CV 

curve of the corresponding modified electrode in ferrocene transfer solution is presented in Figure 7B. 

It can be noticed that the ferrocene signal for the modified electrode practically disappears compared to 

the one on bare electrode (dotted line). This means that the electrode is covered with an insulating layer. 

 
Figure 7. A - Successive CV curves in L solution (2 mM in 0.1 M TBAP, CH3CN)  

when preparing the films by cycling the potential; B - the CV curve of the corresponding  

modified electrode (full line) in 2 mM ferrocene solution in comparison with that obtained 

 on bare  electrode (dashed line) 

 

Modified electrodes were obtained also by CPE at 1.36 V and using different electropolymerization 

charges (0.36 mC, 0.6 mC, 0.8 mC, 1 mC). Figure 8 shows the CV curves of the modified electrodes 

transferred in 2 mM feroccene solution in 0.1 M TBAP, CH3CN. At the lowest charge (0.36 mC) the 

ferrocene signal on the modified electrode is already diminished, but with the increase of the charge (0.6 

mC < 0.8 mC < 1 mC) the signal is less and less pronounced. Since a better coverage of the electrode 

occurs at higher charge, the polyL modified electrode obtained at 1.36 V 1 mC was chosen for the 

recognition of the heavy metals. 

 
Figure 8. CV curves recorded in 2 mM ferrocene solutions 

 (in 0.1M TBAP, CH3CN) for polyL modified electrodes prepared by  

CPE when using different charges (at 1.36 V in 2 mM solution of L  

in 0.1M TBAP, CH3CN) in comparison with that on bare electrode (dashed line) 
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Heavy metals recognition 

Modified electrodes were obtained successively by controlled potential electrolysis (at 1.36 V and 1 

mC) in 2 mM solutions of L in 0.1 mM TBAP, CH3CN. After CPE the modified electrodes were cleaned 

with acetonitrile and transferred in a cell containing 0.1 M acetate buffer solution (ABS) at pH = 5.5 for 

equilibration and overoxidation. These steps were achieved using the CV method (10 equilibration 

cycles between -0.9 V and +0.6 V and 15 overoxidation cycles between -0.2 V and +2.5 V). The extra 

treatments applied for the preparation of the modified electrodes, i.e. equilibration of the modified 

electrodes and overoxidation of the obtained films, lead to significant changes in the complexing 

properties of the modified electrodes. After the step of overoxidation, the modified electrodes were 

washed with deionized water and immersed in accumulation solutions containing heavy metals cations 

(Cd (II), Pb(II), Cu(II), Hg(II)) at different concentrations (10-8 M – 10-5 M) in water, for 15 min. After 

that, the electrodes were cleaned with water and polarized for 120 s at -1.2 V (when the accumulated 

cations were reduced), and then the DPV stripping curves were recorded between -1.2 V and 0.8 V 

(Figure 9). DPV peaks for all investigated cations were found, at specific potentials. Figure 10A shows 

the dependences of these DPV stripping currents on the heavy metal ions concentrations. All the 

investigated cations were detected at concentrations higher then 10-5 M. Pb(II) was sensed with the 

highest signal. It was detected at the lowest concentrations (10-8 M – 10-5 M). Cadmium and copper were 

detected at higher concentrations (10-7 M – 10-5 M). Mercury is not well detected on this modified 

electrode. For lead, a calibration curve was obtained with a linear domain between 10-8 M – 10-6 M 

(Figure 10B), with a good correlation coefficient (0.996). This result indicates a good sensing of lead 

cation when using modified electrodes based on L. The optimization of this electrode is in progress. 

 

 
Figure 9. DPV stripping currents for the polyL modified electrodes  

obtained by CPE (1.36 V, 1 mC) in 2 mM solution of L in 0.1 M TBAP,  

CH3CN, measured at different concentrations of heavy metals 

 in acetate buffer solution at pH 5.5 

 

 
Figure 10. DPV stripping currents dependence on ions concentrations (A)  

for investigated metals; calibration curve for lead (B) 
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4.Conclusions  
The study of 4-(azulen-1-yl)-2,6-bis((E)-2-(thiophen-2-yl)vinyl) pyrylium perchlorate (L) was 

performed by electrochemical methods. The cyclic voltammetry showed the irreversible character of the 

polyL films formation, the differential pulse voltammetry gave the correct values of the characteristic 

peak potentials, while the rotating disk electrode voltammetry proved the formation of the films. 

Mechanistic schemes in correlation with the voltammetric results have been proposed. 

Modified electrodes for metal ions complexation were obtained by successive cycling or by 

controlled potential electrolysis using different amounts of electricity. Sensing of heavy metal ions was 

tested at different concentrations of analytes Cu (II), Pb (II), Cd (II), Hg (II). Lead ion was detected at 

the lowest concentration (10-8 M). The new chemically modified electrodes based on L are suitable to 

be used as sensors for lead analysis in water. 
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